



### Introduction

- We propose a deep learning framework that allows learning parametric implicit shape models, using shape priors together with appearance
- Objective of segmenting low-quality images or datasets:
- Low signal-to-noise ratio
- Limited amount of training data
- Missing parts
- Occlusion of parts

## Approach

- Model receives an image and outputs a segmentation or image reconstruction
- We use a parametric Disjunctive Normal Shape Model (DSNM) [1] together with deep learning:
  - A CNN produces image features
  - Last FC layer outputs parameters of the implicit shape model (each 2D half-space needs 3 coefficients to be reconstructed: Ax+By+C>0)
  - Subsets (groups) of half-spaces create polytopes from their intersection
  - Union of polytopes creates final shape
- Half-spaces are relaxed to logistic functions to make the model differentiable
- Training uses MSE as loss, comparing the output of the network to an image ground truth (we do not use shape parameters as ground truth)



# Image Segmentation by Deep Learning of Disjunctive Normal Shape Model Shape Representation /> Mehran Javanmardi<sup>1</sup>, **Ricardo Bigolin Lanfredi<sup>1</sup>**, Mujdat Cetin<sup>2</sup>, Tolga Tasdizen<sup>1</sup>

<sup>1</sup> University of Utah

## Experiments

- We used models with 2 convolutional layers, 2 fully connected layers, 24 polytopes and 8 half-spaces per polytope.
- We use Dice coefficients to report results.

### Aircraft Dataset [2]

- 11 binary images of aircrafts
- Test images have noise in two different levels and occlusion of left wing
- We trained the model in a leave-one-out setting

|                     | Kim et  | Erdil et | Propose |
|---------------------|---------|----------|---------|
|                     | al. [2] | al. [3]  | approad |
| Image 1, low noise  | 91.12   | 94.49    | 94.23   |
| Image 2, low noise  | 92.69   | 94.75    | 98.51   |
| Image 3, low noise  | 89.97   | 94.66    | 96.96   |
| Image 1, high noise | 87.15   | 89.86    | 94.80   |
| Image 2, high noise | 90.31   | 93.25    | 98.14   |
| Image 3, high noise | 88.03   | 90.05    | 97.83   |
|                     |         |          |         |







### Walking Silhouettes dataset [4]

• 30 images selected – 16 for training Images have high level of additive white noise

|         | Kim et al.<br>[2] | Erdil et al.<br>[3] | Proposed approach |
|---------|-------------------|---------------------|-------------------|
| Image 1 | 87.13             | 88.10               | 91.38             |
| Image 2 | 89.87             | 89.87               | 93.30             |
| Image 3 | 85.43             | 86.58               | 92.06             |

| Dendritic Spine Dataset [5]                                                                            |            |         |                       |                       |          |
|--------------------------------------------------------------------------------------------------------|------------|---------|-----------------------|-----------------------|----------|
| <ul> <li>We trained two shape models, one for<br/>mushroom spines and one for stubby spines</li> </ul> |            |         |                       |                       |          |
| <ul> <li>88 mushroom spines and 27 stubby spines</li> </ul>                                            |            |         |                       |                       |          |
| <ul> <li>We trained models using 8 examples of each</li> </ul>                                         |            |         |                       |                       |          |
| Foulonneau                                                                                             | Kim et al. | Chen et | Erdil et al. [8] with | Erdil et al. [8] with | Proposed |
| et al. [6]                                                                                             | [2]        | al. [7] | geometric priors      | appearance priors     | approach |
| 73.48                                                                                                  | 64.24      | 72.38   | 74.74                 | 74.92                 | 75.25    |

<sup>2</sup> Sabanci University

### MNIST dataset [9]



### Conclusion

- for deliberate initialization

### References

- N. Ramesh et al. Disjunctive normal shape models. ISBI 2015 [2] J. Kim et al. Nonparametric shape priors for active contour-based image segmentation. Sig. Proc., 87, 2007 [3] E. Erdil et al. Mcmc shape sampling for image segmentation with nonparametric shape priors CVPR 2016 [4] D. Cremers et al. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. IJCV 2006. [5] Obtained from Neuronal Structure and Foundation Laboratory of Champalimaud Neuroscience Foundation in Lisbon [6] A. Foulonneau et al. Multi-reference shape priors for active contours. IJCV 2009. [7] S. Chen et al. Level set segmentation with both shape and intensity priors. ICCV 2009.
- [8] E. Erdil et al. Nonparametric joint shape and feature priors for image segmentation. IEEE Trans. on Im. Proc., 2017. [9] Y. LeCun et al. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998.

ch 







Output



### Model predicts 10 different shapes and 10 class probabilities • Model outputs the shape corresponding to the class with highest probability • We added Gaussian noise and occlusions/exclusion of parts to test set

| st image | Output | Ground truth | Test image | Output | Test image | Output |
|----------|--------|--------------|------------|--------|------------|--------|
| 1        |        | l            | 1          |        |            | l      |
| 2        | 2      | 2            | 2          | 2      | 2          | 2      |
| B        | 3      | 3            | 3          | ŝ      | 3          | 3      |
| И        | 4      | 4            | 31         | 4      | #          | 4      |
| 5        | 5      | 5            | 55         | 5      | 5          | F      |
| 6        | 6      | 6            | 1.         | 6      | *          | 6      |
| X        | 7      | 7            |            | ٦      | 4          | ٦      |
| 8        | 8      | 8            | 27         | 8      | 8          | 8      |
| 4        | 9      | $c_1$        | 41         | 9      | 9          | 9      |

• Our framework of CNN+DSNM was able to segment data with noise, with occlusion/removal of parts and with limited amount of training data • We achieved superior scores against previous methods in 3 datasets • The model is computationally efficient and fully automated, with no need